Assessing the trophic position and ecological role of squids in marine ecosystems by means of food-web models
نویسندگان
چکیده
We synthesized available information from ecological models at local and regional scales to obtain a global picture of the trophic position and ecological role of squids in marine ecosystems. First, static food-web models were used to analyze basic ecological parameters and indicators of squids: biomass, production, consumption, trophic level, omnivory index, predation mortality diet, and the ecological role. In addition, we developed various dynamic temporal simulations using two food-web models that included squids in their parameterization, and we investigated potential impacts of fishing pressure and environmental conditions for squid populations and, consequently, for marine food webs. Our results showed that squids occupy a large range of trophic levels in marine food webs and show a large trophic width, reflecting the versatility in their feeding behaviors and dietary habits. Models illustrated that squids are abundant organisms in marine ecosystems, and have high growth and consumption rates, but these parameters are highly variable because squids are adapted to a large variety of environmental conditions. Results also show that squids can have a large trophic impact on other elements of the food web, and top-down control from squids to their prey can be high. In addition, some squid species are important prey of apical predators and may be keystone species in marine food webs. In fact, we found strong interrelationships between neritic squids and the populations of their prey and predators in coastal and shelf areas, while the role of squids in open ocean and upwelling ecosystems appeared more constrained to a bottom-up impact on their predators. Therefore, large removals of squids will likely have large-scale effects on marine ecosystems. In addition, simulations confirm that squids are able to benefit from a general increase in fishing pressure, mainly due to predation release, and quickly respond to changes triggered by the environment. Squids may thus be very sensitive to the effects of fishing and climate change. & 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Trophic signatures of seabirds suggest shifts in oceanic ecosystems
Pelagic ecosystems are dynamic ocean regions whose immense natural capital is affected by climate change, pollution, and commercial fisheries. Trophic level-based indicators derived from fishery catch data may reveal the food web status of these systems, but the utility of these metrics has been debated because of targeting bias in fisheries catch. We analyze a unique, fishery-independent data ...
متن کاملStable Isotope Application in Animal Nutrition Science
The application of stable isotope analysis (SIA) has become a standard scientific approach in Agricultural and Ecological researches and, more in general, in several disciplines such as biology, botany, zoology, organic chemistry, climatology, and nutrition. The main objectives of this paper are (1) to provide a simple definition of stable isotopes and (2) to illustrate analytical measurement m...
متن کاملChallenges of modeling ocean basin ecosystems.
With increasing pressure for a more ecological approach to marine fisheries and environmental management, there is a growing need to understand and predict changes in marine ecosystems. Biogeochemical and physical oceanographic models are well developed, but extending these further up the food web to include zooplankton and fish is a major challenge. The difficulty arises because organisms at h...
متن کاملThe possibility of occurrence of the phenomenon “fishing down marine food webs” in the coastal waters of Hormozgan Province (north of the Persian Gulf and Oman Sea)
We examined the temporal trend in mean trophic level (mTL), trophic category landing (TrC) and landing profile (LP) of the exploited marine community (49 species) in the fishing zone of Hormozgan (north of Persian Gulf and Oman Sea) from 2001 to 2011. LP had an increasing trend (r = 0.88, P<0.001), whereas, mTL of the landings showed a significant decrease from 2001 to 2011 (r = -0.69, P<0.05)....
متن کاملComparison of ecosystem modelling and isotopic approach as ecological tools to 2 investigate food webs in the NW Mediterranean Sea 3 4
23 24 Understanding how marine ecosystems are structured and how they function is a 25 scientific challenge. Nowadays, to learn about ecosystem trophic dynamics ecologists use 26 two complementary methodological approximations, mass-balance ecosystem models and 27 isotopic tools. However, despite the wide applications of these methodologies, the 28 comparison and combination of both are still s...
متن کامل